
Solving Mutual Exclusion (1)

Concurrency and Parallelism — 2017-18
Master in Computer Science

(Mestrado Integrado em Eng. Informática)

Joao Lourenço <joao.lourenco@fct.unl.pt>

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Summary

•Solving Mutual Exclusion
–Mutex based on atomic read-write

registers
–Concurrency-abortable operation

• Reading list:
– Chapter 2 of the book

Raynal M.;
Concurrent Programming: Algorithms,
Principles, and Foundations;
Springer-Verlag Berlin Heidelberg (2013);
ISBN: 978-3-642-32026-2

Oct	20,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 2

Mutex Based on
Atomic Read/Write Registers
• A register R can be accessed by two base

operations:

• R.read(), which returns the value of R (also
denoted x← R where x is a local variable of the
invoking process); and

• R.write(v), which writes a new value into R (also
denoted R← v, where v is the value to be
written into R).

Oct	20,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 3

Mutex Based on
Atomic Read/Write Registers
• An atomic shared register satisfies the following

properties:
• Each invocation op of a read or write operation:

– Appears as if it was executed at a single point T(op) of the time
line;

– T(op) is such that Tb(op) ≤ T(op) ≤ Te(op), where Tb(op) and Te(op)
denote the time at which the operation op started and finished,
respectively;

– For any two operation invocations op1 and op2:
(op1≠ op2) ⇒ T(op1)≠ T(op2).

• Each read invocation:
– Returns the value written by the closest preceding write

invocation in the sequence defined by the T(…) instants
associated with the operation invocations (or the initial value of
the register if there is no preceding write operation).

Oct	20,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 4

Tb TeT

Mutex Based on
Atomic Read/Write Registers

Oct	20,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 5

P1

P2

P3

R.read() R.read()

R.read()

R.write(2)R.write(1)

R.write(3)

Mutex Based on
Atomic Read/Write Registers

Oct	20,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 6

P1

P2

P3

R.read() R.read()

R.read()

R.write(2)R.write(1)

R.write(3)

Omniscient	observer’s	time	line

? ?

?

Mutex Based on
Atomic Read/Write Registers

Oct	20,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 7

P1

P2

P3

R.read() R.read()

R.read()

R.write(2)R.write(1)

R.write(3)

Omniscient	observer’s	time	line

1 2

3

Mutex Based on
Atomic Read/Write Registers

Oct	20,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 8

P1

P2

P3

R.read() R.read()

R.read()

R.write(2)R.write(1)

R.write(3)

Omniscient	observer’s	time	line

1 2

3

Here	R	=	1 Here	R	=	2 Here	R	=	3

Mutex Based on
Atomic Read/Write Registers

Oct	20,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 9

P1

P2

P3

R.read() R.read()

R.read()

R.write(2)R.write(1)

R.write(3)

Omniscient	observer’s	time	line

1 3

3

Here	R	=	1 Here	R	=	2 Here	R	=	3

Mutex Based on
Atomic Read/Write Registers

Oct	20,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 10

P1

P2

P3

R.read() R.read()

R.read()

R.write(2)R.write(1)

R.write(3)

Omniscient	observer’s	time	line

1 1

3

Here	R	=	1 Here	R	=	2 Here	R	=	3

Mutex Based on
Atomic Read/Write Registers

Oct	20,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 11

P1

P2

P3

R.read() R.read()

R.read()

R.write(2)R.write(1)

R.write(3)

Omniscient	observer’s	time	line

1 3

2

Here	R	=	1 Here	R	=	3 Here	R	=	2

Mutex for Two Processes:
An Incremental Construction

Oct	20,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 12

G.L. Peterson (1981)

ümutual exclusion
C progress

Must have contention to have progress
May cause deadlock (by starvation)

Mutex for Two Processes:
An Incremental Construction

Oct	20,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 13

G.L. Peterson (1981)

ümutual exclusion
C progress

May cause deadlock

Mutex for Two Processes:
An Incremental Construction

Oct	20,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 14

G.L. Peterson (1981)

ümutual exclusion
C progress

May cause livelock

?

Mutex for Two Processes:
An Incremental Construction

Oct	20,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 15

G.L. Peterson (1981)

ümutual exclusion
üprogress

Only works for two processes!
Can we make it work for more?

Mutex for n Processes: Generalizing
the Previous Two-Process Algorithm

Oct	20,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 16

G.L. Peterson (1981)
p

i
is allowed to progress to level ‘l+1’ if, from its point of view,

• Either all the other processes are at a lower level
(i.e., ∀ k ≠ i:FLAG_LEVEL [k] < l).

• Or it was not the last one entering level ‘l’ (i.e., AFTER_YOU[l] ≠ i).

ümutual exclusion
üprogress

The END

Oct	20,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 17

